

New tutorial just released

Survival of the Fittest: Classical and Machine Learning Methods for Time-to-Event Modeling

Daniel Meier*

Adam Sturge[†]

Prepared for:

Fachgruppe "Data Science"
Swiss Association of Actuaries SAV
Version of August 31, 2025

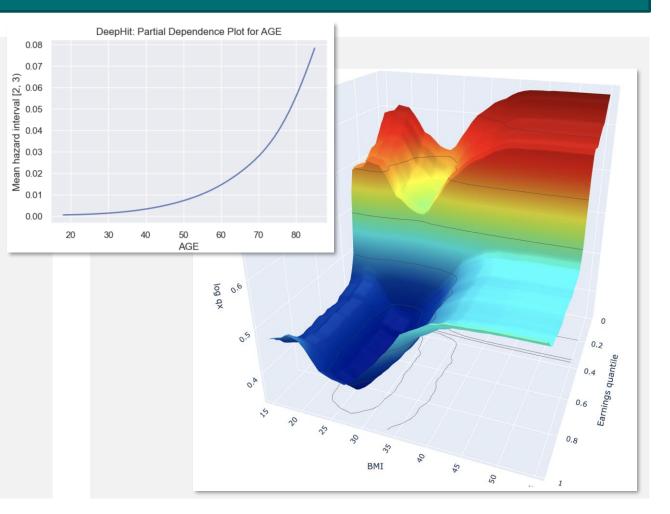
Abstract

This tutorial provides an overview of classical and machine learning methods for survival modeling. We start with introducing the basic concepts of survival modeling using the Cox proportional hazards model and the accelerated failure time model, highlighting their

Case study 16 on actuarial datascience.org

Where is survival modelling applied?

- Life & Health Underwriting
- Scenario testing, e.g., weight loss drugs
- US cancer registry SEER: Underwriting
- CIA pensioner mortality tables
- Unemployment times
- Public health
- Any other use case where time-to-event is important, e.g., credit default, lapse, engineering, etc.



Linear regression

$$y(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M$$

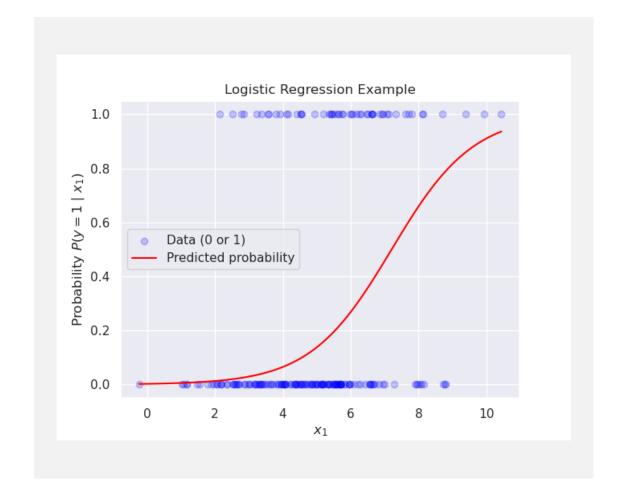
OLS Regression Results									
Dep. Variable:				v	R-sa	 uared:		0.738	
Model:				•		R-squared:		0.734	
Method:		Le	east Squ		_	atistic:		184.4	
Date:						(F-statistic):		8.17e-57	
Time:			_			Likelihood:		-277.39	
No. Observation	ns:			200	AIC:			562.8	
Df Residuals:				196	BIC:			576.0	
Df Model:				3					
Covariance Type	⊇:		nonro	bust					
==========							======	========	
	coef		std err		t	P> t	[0.025	0.975]	
const	2.1888	3	0.293	7.	458	0.000	1.610	2.768	
x1	0.4899)	0.034	14	387	0.000	0.423	0.557	
x2 -	-0.3286)	0.025	-13	149	0.000	-0.377	-0.279	
x3	1.1735	5	0.068	17	172	0.000	1.039	1.308	
==========							======	========	
Omnibus:			(3.265	Durb	in-Watson:		2.082	
Prob(Omnibus):						ue-Bera (JB):		0.402	
Skew:				0.064		• •		0.818	
Kurtosis:			2	2.822	Cond	. No.		48.1	
==========							======	=======	
						statsmo	dels s	ummary	

Logistic regression

$$p(x) = \operatorname{logistic}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M)$$
$$\operatorname{logistic}(x) = (1 + \exp(-x))^{-1}$$

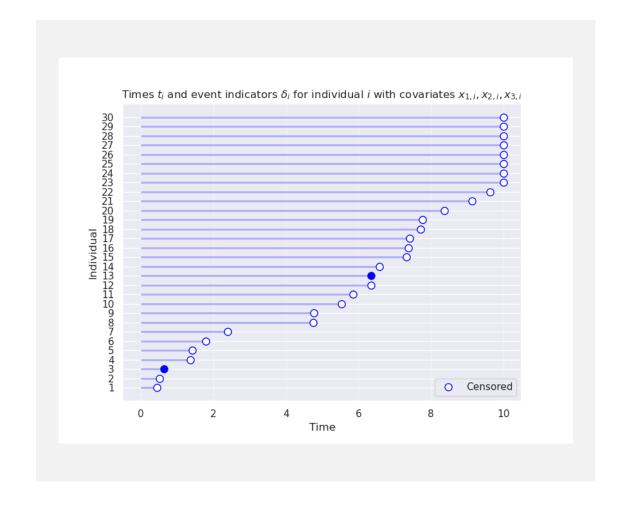
			lts		
Dep. Variable:	у	No. Obse	rvations:		200
Model:	Logit	Df Resid	uals:		196
Method:	MLE	Df Model	Df Model:		3
Date:	Fri, 15 Aug 2025	Pseudo R	-squ.:		0.4304
Time:	14:48:34	Log-Like	lihood:		-66.445
converged:	True	LL-Null:			-116.65
Covariance Type:	nonrobust	LLR p-va	lue:		1.266e-21
			======		
coe	f std err	Z	P> z	[0.025	0.975]
const 0.930	4 0.915	1.017	0.309	-0.863	2.723
x1 0.831	0.155	5.354	0.000	0.527	1.136
x2 -0.664	7 0.112 -	5.961	0.000	-0.883	-0.446
x3 1.191	5 0.270	4.413	0.000	0.662	1.721

statsmodels summary



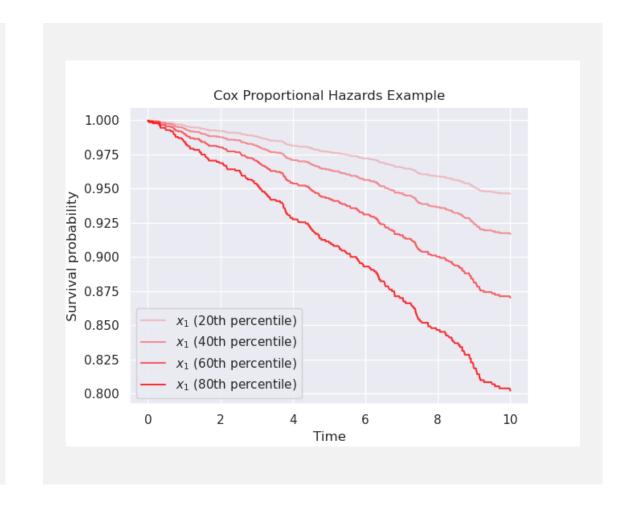
$$h(t|\mathbf{x}) = h_0(t) \exp(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M)$$

- **Data** consists of individuals i with
 - features $x_{1,i}$, $x_{2,i}$, ...
 - time t_i
 - event indicator δ_i , where
 - $\delta_i = 0$ denotes (right-)censoring
 - $\delta_i = 1$ denotes, e.g., mortality
- What is the distribution (CDF F, PDF f) of survival time T?



$$h(t|\mathbf{x}) = h_0(t) \exp(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M)$$

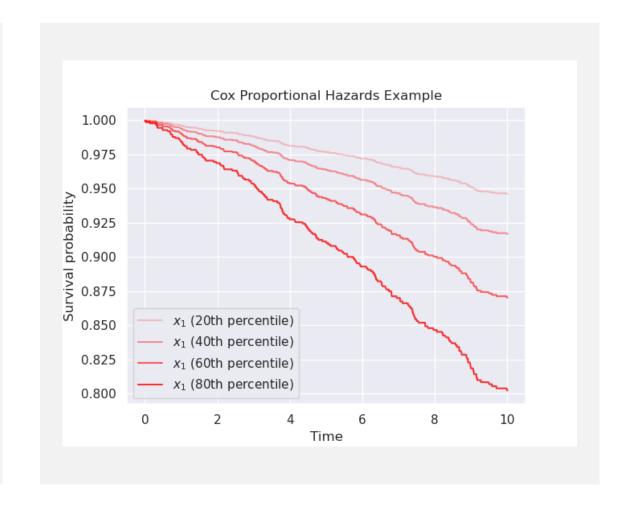
- Hazard rates h(t|x), correspond to force of mortality $\mu_x(t)$ in continuous time and $q_{x,t}$ or $m_{x,t}$ in discrete time
- Proportional hazards: $h(t|x_i)/h(t|x_j)$ const.
- Survival probability function S(t|x), corresponds to $_tp_x$
- $S(t|\mathbf{x}) = 1 F(t|\mathbf{x})$
- $h(t|\mathbf{x}) = -\frac{\partial}{\partial t} \log S(t|\mathbf{x}) = \frac{f(t|\mathbf{x})}{S(t|\mathbf{x})}$



$$h(t|\mathbf{x}) = h_0(t) \exp(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M)$$

- Baseline hazard rates $h_0(t)$ via
 - Kaplan-Meier: $S(t) = \prod_{t_i \le t} \left(1 \frac{d_i}{n_i}\right)$
 - Nelson-Aalen: $H(t) = \sum_{t_i \le t} \frac{d_i}{n_i}$
- Coefficients $\beta_1, \beta_2, ...$ via partial likelihood function maximization (Breslow method)

$$\mathcal{L} = \prod_{i:\delta_i=1} \prod_{j:t_j=t_i} \frac{\exp(\beta_1 x_{1,j} + \cdots)}{\sum_{k:t_k \ge t_j} \exp(\beta_1 x_{1,k} + \cdots)}$$



A bit of public health history...

Lester Breslow (1915-2012), the father of Norman Breslow after whom the method was named

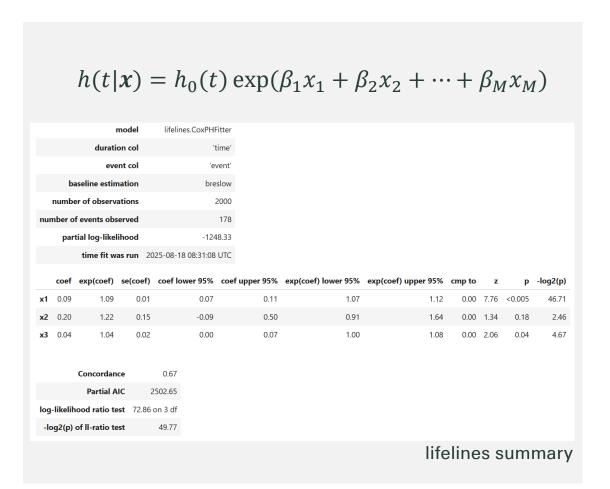
r. Lester Breslow, a former dean of the UCLA Jonathan and Karin Fielding School of Public Health, professor emeritus of health services, and one of the leading figures in public health for seven decades, died Monday. He was 97.

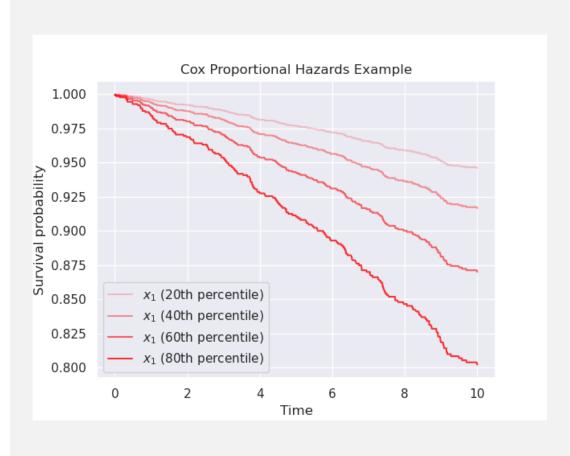
Breslow was a visionary public health figure with a well-established track record for being ahead of his time. As early as the 1940s, he linked tobacco use to disease in three studies that were later cited in the U.S. Surgeon General's landmark 1964 report.

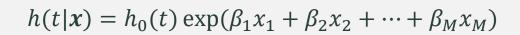
He is widely known for his early advocacy and research into health promotion and disease prevention. Breslow's pioneering Alameda County studies beginning in the early 1960s were among the first to show that simple health practices — such as getting regular exercise and sleep, not drinking excessively, not smoking, and maintaining a healthy weight — add both years and quality to life.

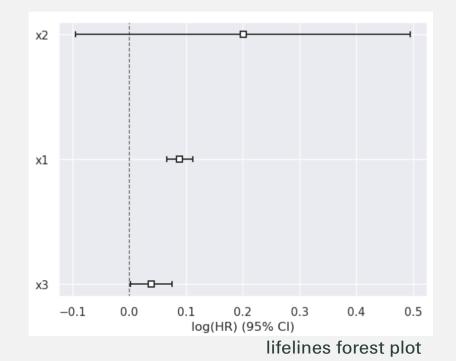
While these conclusions are taken for granted today, the idea of such a strong connection between lifestyle and health was seen as "bizarre" at the time, Breslow noted decades later. He would smile when recalling the response of the National Institutes of Health panel of scientists that reviewed the initial study proposal: "Unanimous rejection." When the study was completed, even Breslow was shocked at the magnitude of the results, which helped usher in current thinking about health and fitness.

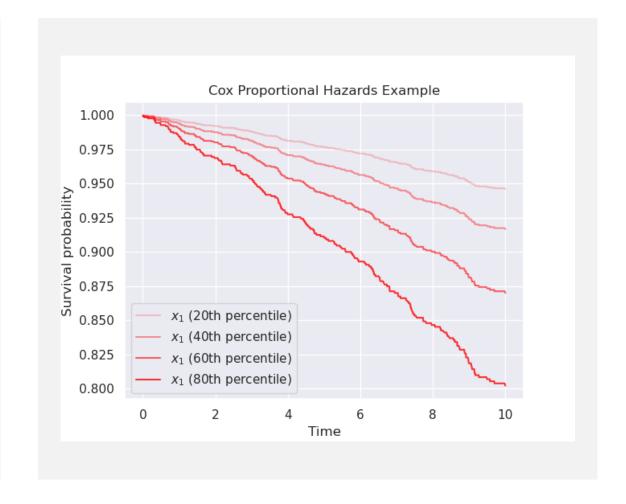
Source: https://ph.ucla.edu/news-events/news/memoriam-dr-lester-breslow-public-health-visionary

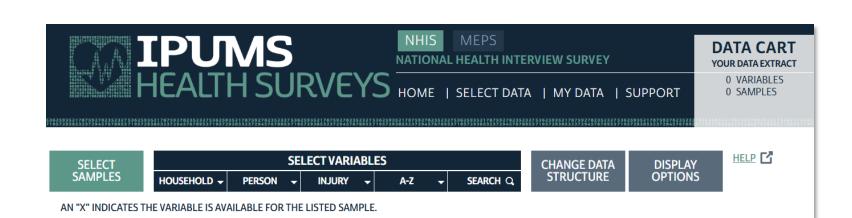












The dataset

IPUMS

CORE DEMOGRAPHIC VARIABLES -- PERSON [TOP]

Dear Daniel,

As you may already be aware, on Friday, January 31, federal agencies removed public data and documentation previously made available via public-facing federal government websites in response to administration directives. The types of data removed include large-scale population data sources that provide vital insight into the health and wellbeing of all communities.

We are writing to reassure you that IPUMS data remain available, and that IPUMS remains committed to preserving and democratizing access to the world's population data.

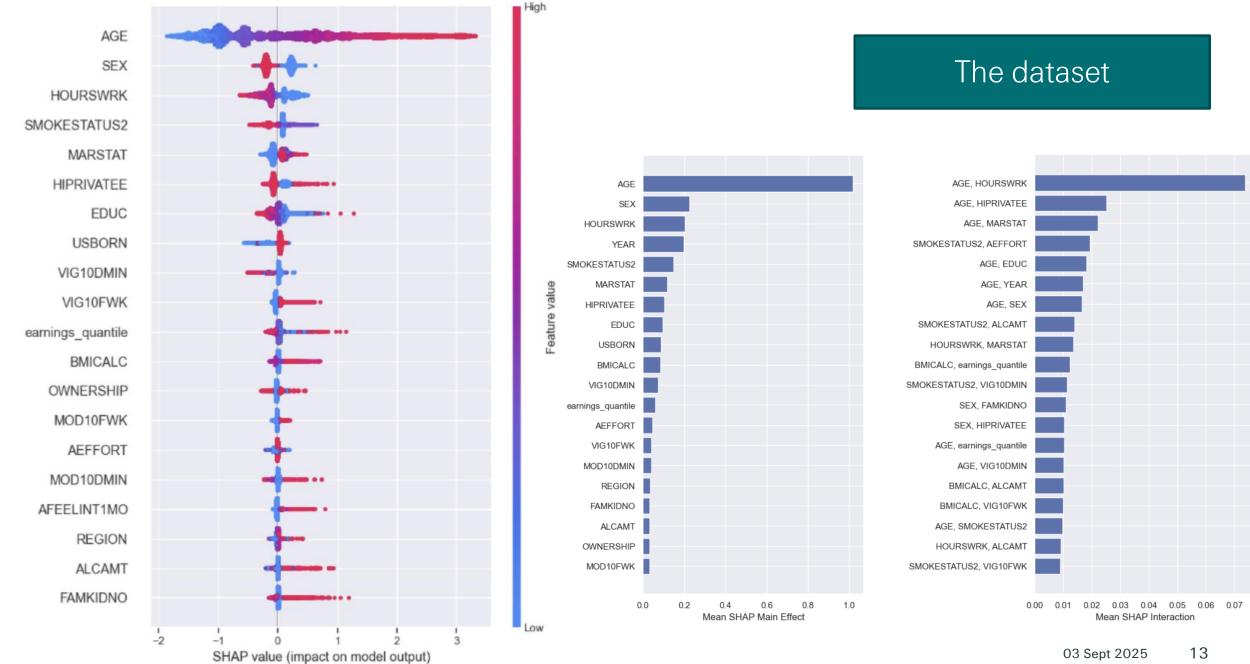
	COHADEVIVIAIL	Conabiting person ever married								^	^ /	\ \	^	^ /	\ \	^	^	^	^	^ .	^ ′	^ /		` ^	
0	<u>MARRIEDEV</u>	Ever been married	Р	Χ	Χ	X	Χ	Χ	Χ																
•	SPOUSESEX	Sex of sample adult's spouse	Р	Χ	Χ	X	X	Χ	Χ																
•	<u>SPOUSAGE</u>	Age of sample adult's spouse	P	Χ	X	X	Χ	Χ	Χ																
•	<u>PRTNRSEX</u>	Sex of sample adult's unmarried partner	Р	Χ	X	X	Χ	Χ	Χ																
•	<u>PRTNRAGE</u>	Age of sample adult's unmarried partner	Р	Χ	X	X	X	Χ	Χ																
•	<u>BIRTHMO</u>	Month of birth	Р										Χ	X)	(X	X	Χ	Χ	Χ	X	X	X >	X	(X	Χ

Data since 1963

100k individuals per year

500+ features: demographic, socio-economics, health behaviors, mental health, mortality, cause of death, etc.

Part of our directory of publicly available datasets at actuarialdatascience.org



Other survival models

Model	Parameterization	Comments						
Cox proportional hazards	$h(t \mathbf{x}) = h_0(t) \exp(\beta_1 x_1 + \cdots)$	Proportional hazards, de facto standard						
Accelerated Failure Time (AFT)	$T = \exp(\varepsilon) \exp(\beta_1 x_1 + \cdots)$	Scaling survival time						
Survival trees	$S(t \mathbf{x}) = S_l(t)$, where l is \mathbf{x} 's leaf	Log-rank test to split tree, Kaplan -Meier						
Random survival forest	$S(t \mathbf{x}) = \frac{1}{B} \sum_{b} S_{l}^{(b)}(t)$	Tree ensemble of survival trees						
Gradient boosted survival	$h(t \mathbf{x}) = h_0(t) \exp(f^{(m)}(\mathbf{x}))$	Iterative tree refinement $f^{(0)}$, $f^{(1)}$,, $f^{(m)}$						
DeepSurv	$h(t \mathbf{x}) = h_0(t) \exp(z_{\theta}(\mathbf{x}))$	Neural network $z_{\theta}(x)$, likelihood, early stopping						
DeepHit	Discrete version of PDF $f(t x)$	Neural network with softmax as last layer, allows to model competing risks						
Transformer based survival	Discrete version of PDF $f(t x)$	Transformer based neural network that can consider full longitudinal data, i.e., history of covariates, e.g., BMI timeseries						

Survival model performance metrics

• **C-index**: let *P* be the set of *comparable* individuals (i, j), i.e., $\delta_i = 1$ and $t_i < t_j$,

$$C-index = \frac{1}{\#P} \sum_{(i,j) \in P} \mathbb{I}_{h(t_i|x_i) > h(t_j|x_j)}$$

Integrated Brier score (IBS):

IBS =
$$\int_0^\tau \frac{1}{n} \sum_{i=1}^n w_i(t) (\mathbb{I}_{t_i > t} - S(t|\mathbf{x}_i))^2$$
, where $w_i(t)$ are inverse probability censoring weights

• Log-loss in time interval (LL): let $y_i(t_1, t_2)$ be the indicator whether individual i had an event in $[t_1, t_2)$,

$$LL = -\frac{1}{n} \sum_{i=1}^{n} y_i(t_1, t_2) \log(S(t_1 | \mathbf{x}_i) - S(t_2 | \mathbf{x}_i)) + (1 - y_i(t_1, t_2)) \log(1 - S(t_1 | \mathbf{x}_i) + S(t_2 | \mathbf{x}_i))$$

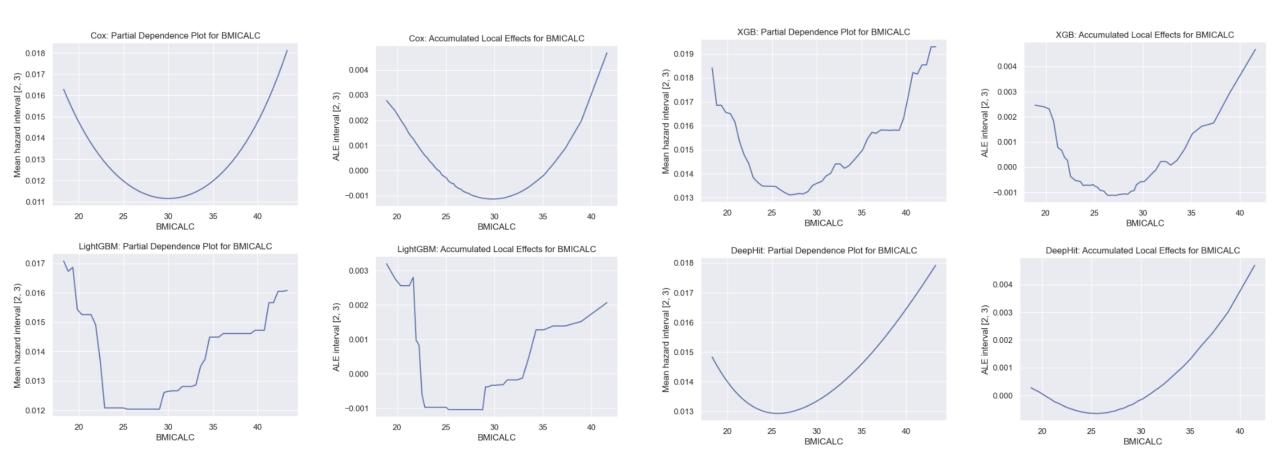
• Mean squared error (MSE) of log predictions: let $\mu_i(t_1, t_2)$ denote the ground truth probability

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\log(S(t_1|x_i) - S(t_2|x_i)) - \log\mu_i(t_1, t_2))^2$$

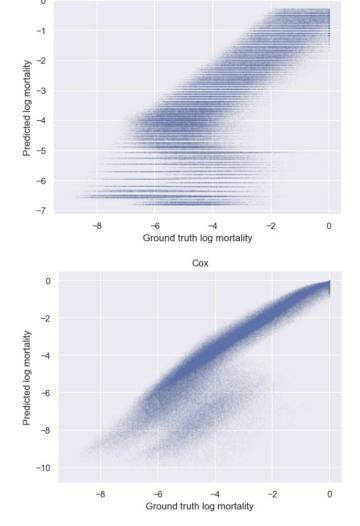
Survival model performance metrics

	C-index \uparrow	IBS \downarrow	LL $[2,3) \downarrow$	Time [min] \downarrow
Base q_x	0.8402	0.0439	0.0519	<1
LightGBM	0.8599	0.0415	0.0502	<1
Cox Proportional Hazards	0.8612	0.0417	0.0504	<1
Accelerated Failure Time	0.8612	0.0425	0.0517	<1
Survival Trees	0.8570	0.0415	0.0512	4
Random Survival Forests	0.8682	0.0412	0.0507	491
Gradient Boosted Survival Trees	0.8701	0.0412	0.0507	444
XGBoost Cox	0.8724	0.0410	0.0512	<1
DeepSurv	0.8711	0.0393	0.0511	<1
DeepHit	0.8781	0.0407	0.0515	4
Deep Survival Machines	0.8705	0.0423	0.0509	5
Transformer Survival Model	0.8689	0.0396	0.0504	337

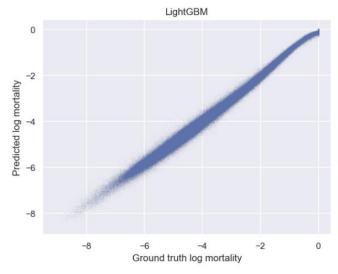
Partial dependence plots and accumulated local effects

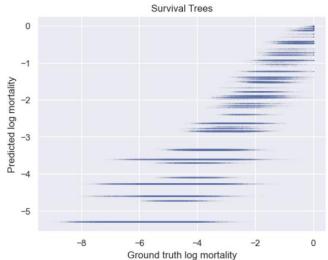


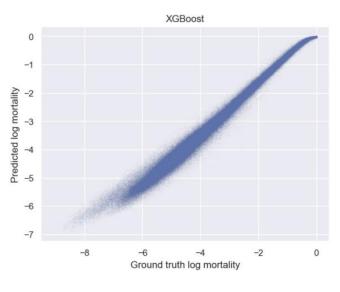
Ground truth vs. predictions on a larger synthetic dataset



Base qx







Tips and tricks and pitfalls

- 1. Start with a fast and strong model, e.g., LightGBM (interval event prediction) or XGBoost (survival)
- 2. For (Life & UW) actuarial purposes, MSE on log predictions is probably the best performance metric if the ground truth is known
- 3. If the ground truth is not known, try to predict it with the models from 1., potentially simulating a new dataset as a learning experience to choose a deep learning model if you have sufficient data
- 4. Don't underestimate the many pitfalls of survival modelling:
 - off-by-one errors or other discretization issues on the time dimension
 - selection effects for early times
 - missing values (not at random)
 - time-dependencies, e.g., current vs. past BMI
 - miscalibrated models, e.g., overestimating risk of low risk individuals
 - slow running times

Thank you!

Contact us

Daniel Meier

L&H R&D Manager daniel_meier@swissre.com

Follow us

Legal notice

©2025 Swiss Re. All rights reserved. You may use this presentation for private or internal purposes but note that any copyright or other proprietary notices must not be removed. You are not permitted to create any modifications or derivative works of this presentation, or to use it for commercial or other public purposes, without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and may change. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for its accuracy or comprehensiveness or its updating. All liability for the accuracy and completeness of the information or for any damage or loss resulting from its use is expressly excluded.

