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Limited data availability for sensitive personal (Life &
Health) data in practice (e.g., nFADP, 1 September 202 3)

For sufficiently large and dense datasets, ML/DL

methods outperform traditional models, creating value
for policyholders and insurance companies

Privacy preserving methods can help to access data
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Agenda

 Creation of synthetic health datasets
* Introducing 3 models to create health risk scores: Logistic regression, Cox regression, neural networks
e Homomorphic encryption

Paper and code soon available at actuarialdatascience.org
SAV S.i\cl:\:;rz\;:’i:::n];ung . .
/ AGA \Assecation susse Actuarial Data Science
ASA L:ff;fiﬁilﬁ.:f. e An initiative of the Swiss Association of Actuaries

Hons Actuarial Data Science Tutorials Updates

_ On this page we present all the tutorials that have been prepared by the working Below, we provide the most

party. We are intensively working on additional ones and we aim to have approx. 10 recent changes to the website:

ADS Strategy tutorials, covering a wide range of Data Science topics relevant for actuaries.
' g g P « 15th Mar 23: Publication of
ADS Lectures / Courses our new tutorial: SHAP for
All tutorials consist of an article and the corresponding code. In the article, we Actuaries: Explain any,

ADS Regulatory / Ethics describe the methodology and the statistical model. By providing you with the code Model

you can easily replicate the analysis performed and test it on your own data.
DS Lectures / Books « 14th Oct 22: Publication of

External Courses . ) our new tutorial: Gini Index
Case Study 14: SHAP for Actuaries: Explain any Model aral BiEniE
Newsletter Article on SSRN
About Us Code on GitHub ; Notebook Events
. . Below, we provide upcoming
Case Study 13: Gini Index and Friends events in Actuarial Data
Article on SSRN Science:
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Code on GitHub « 16th May 2023: EAA Data 31 August 2023




(Publicly) available health datasets

e CPRD, https://cprd.com/data

« MIMIC, https://physionet.org/about/database/
 |PUMS, https://healthsurveys.ipums.org/

* NHANES, https://www.cdc.gov/nchs/nhanes/

* Nightingale, https://docs.nightingalescience.org/
« UK Biobank, https://www.ukbiobank.ac.uk/
 |HME, https://ghdx.healthdata.org/

 See also longitudinal study for other health datasets

Often, access is restricted to academic institutions and/or
limited to a pre-defined research topic

Data volumes (and density) rather too low for ML

Access to more data sources (e.g., hospitals, GPs,
insurance companies, etc.) — in a privacy preserving
manner — is needed

@ Swiss Re
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Health risk scores, e.g., QRISK3 providing 10-year risk of a cardio-vascular disease (CVD)

linRisk
Clinkis #  Welcome to the QRISK®3-2018 risk calculator https://grisk.org

This calculator is only valid if you do not already have a diagnosis of coronary heart disease (including angina or heart attack) or stroke/transient ischaemic attack.

I Reset ][ Information H Publications ][ About H Copyright H Contact Us ][ Algorithm H Software H UKCA
—About you Your results
Age (25-84):

Your risk of having a heart attack or stroke within the next 10 years is:
Sex: ®Male O Female

Ethnicity: White or not stated v

(UK postcode: leave blank if unknown~‘

In other words, in a crowd of 100 people with the same risk factors as you, 1 are likely to have a heart attack or stroke within the next 10 years.

Postcode: :]

— Clinical information

Smoking status: [ non-smoker v|

Diabetes status:

Angina or heart attack in a 1st degree relative < 60? [

Chronic kidney disease (stage 3, 4 or 5)? [}
Atrial fibrillation? (]
On blood pressure treatment? ] a heart attack or stroke

Do you have migraines? ]

Your score has been calculated using estimated data, as some information was left blank.
Rheumatoid arthritis? )

Systemic lupus erythematosus (SLE)? [ Your body mass index was calculated as 23.15 kg/m?.
Severe mental illness? “
(this includes schizophrenia, bipolar disorder and O How does Yot 10 YSaE SeOr9 compare?

moderate/severe depression)

On atypical antipsychotic medication? []
Are you on regular steroid tablets? [] Your 10-year QRISK®3 score 0.6%
The score of a healthy person with the same age, sex, and ethnicity” 0.7%

Your score

A diagnosis of or treatment for erectile disfunction? (]

— Leave blank if unknown Relative risk 0.9
-
Cholesterol/HDL ratio: Your QRISK®3 Healthy Heart Age 35
Systolic blood pressure (mmHg): | 120 * This is the score of a healthy person of your age, sex and ethnic group, i.e. with no adverse clinical indicators and a cholesterol
y p ( g) ratio of 4.0, a stable systolic blood pressure of 125, and BMI of 25.
Standard deviation of at least two most " Your relative risk is your risk divided by the healthy person’s risk.
recent systolic blood pressure readings ™ Your QRISK®3 Healthy Heart Age is the age at which a healthy person of your sex and ethnicity has your 10-year QRISK®3
(mmHg): HOE:

Body mass index

Height (cm):
Weight (kg): |75
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10 year relative CVD risk
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Relative risk with respect to a reference person of same age, gender

RR(x) =

20

p(X)
Mref

Relative CVD risk with BMI 23.1 as reference

25

BMI

30

35

40

Country  Mean BMI females Mean BMI males

Samoa 33.5 299

USA 28.8 28.8

UK 271 27.5

Germany 25.6 27.0

Italy 252 26.8

France 24.6 26.1

Switzerland 23.8 26.7

Japan 21.7 23.6

Country Life exp. females Life exp. females

Samoa 75.5 71.3
USA 81.5 76.5
UK 83.3 79.6
Germany 83.5 78.8
Italy 85.4 81.1
France 85.6 79.8
Switzerland 85.6 81.9
Japan 87.4 81.4



Various risk factors like BMI, systolic blood pressure (SBP) impact relative risk

— 1. SBP = 125, independent of EMI
1.8 —— 2.SBP set to conditional expectation wrt BMI
—— 3. Expected risk conditioned on BEMI
17
1.6

1.5

1.4

1.3

10 year relative CVD incidence risk

20 25 30 35 40
BMI

1. What is the risk of a person with a given BMI and all other attributes equal to the reference person, u(BMI, SBP,.¢)?
2. What is the risk of a person with a given BMI, and SBP set to the conditional expectation of SBP given BMI, u(BMI, E[SBP|BMI])?

3. What is the expected risk of a person with a given BMI, E[u(x)|BMI]?
4. What is the (causally implied) risk of the reference person when changing BMI, E[u(x)|do(BMI)]?
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Creation of a synthetic health dataset

e id: an ID to uniquely identify a person,

e year: observation year of health information,

e age: age of the person at time year,

e gender: male (0)/female (1),

e bmi: body-mass-index (BMI), unit kg/m?,

e sbp: systolic blood pressure (SBP), unit mmHg,

e sd_sbp: standard deviation of systolic blood pressure measurements, unit mmHg,

e tcl hdl ratio: total cholesterol level (TCL) divided by high-density lipoprotein level (HDL),

e numl, num2, num3: 3 generic numeric health risk factors without specifying their meaning explic-
itly, e.g., stepcounts, triglycerides, resting heartrate, etc.

e binary: a generic binary health risk factor, e.g., smokers, foreign born, etc.,

@ Swiss Re 31 August 2023



sbp
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Creation of a synthetic health dataset
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Creation of a synthetic health dataset

152

( sbp )~N((125) ( 15-0.25p))
log(bmi) 3.2)7\15-0.25p  0.252

Density plot

()

X
B
Q
R
’3 \
f\,(;
age | gender | bmi I sbp| |event | time_to_event
35 m 24 | 120 0 -
36 m 24 | 120 0 -
1 2019 | 44 m 24 | 120 0 -
2010 | 35 m 33 | 145 0 7.5
2 | 2011 | 36 m 33 | 145 0 6.5
2 | 2017 | 44 m 33 | 145 1 0.5
3 | 2010 | 35 m 26 | 125 0 -
3 | 2011 | 36 26 | 125 -
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Model 1: Logistic regression/generalized linear model (GLM)

1
xr) = , or equivalentl
b (@) 1+ exp(—fBo — frx1 — - -+ — Brxk) 4 !
logit(ui(z)) = PBo+ piz1 + -+ Brx

import statsmodels.formula.api as sm
log_reg = sm.logit(formula="E"SBP+BMI+I(BMI*%*2)", data=time_to_event_train).fit()
pred = log_reg.predict(time_to_event_test)

Odds/log-odds
Py=1|z) Ply=1|=z)

Odds(y =1 | .’.U) P(y =0 | m) T ] = P(y =1 | m) id | year ‘ age | gender | bmi | sbp event|| time_to_event
1 | 2010 || 35 m 24 | 1200 0 -
loglodds(y=1|x)) = PBo+pix1+ -+ Brx - 12011 |36 | m | 24 [1200 o0
1| 2019 || 44 m 24 | 1200 0 -
. 2 | 2010 || 35 m 33 | 145 0 7.5
Odds ratios 2 | 2011 || 36 m 33 | 145 0 6.5
odds(y =1 | (z1,... yZj+1,..., .’Bk)) _ exp(Bo + frz1 + - + ,83‘ (.’L’j + 1)+ -+ Brzxg) 2 20'17 4'4 m 3‘3 1"15 1 0:5
odds(y =1 | ) exp(Bo + Biz1 + -+ - + Brwk) 30210 |35 | m | 26 1250 o0
= exp(ﬂj) . 3 | 2011 || 36 m 26 | 125 0




Model 2: Cox regression

h(t | @) = ho(t) exp (Brz1 + - + Beax )

import lifelines as 11
cph = 11.CoxPHFitter ()

cph.fit(time_to_event, "T", event_col="E", formula="SBP+BMI+I(BMI**2)")
pred = (1 - np.array(cph.predict_survival_function(time_to_event_test))[10,:])

From hazard rates to 10-year risk

age | gender | bmi | sbp

event ‘ time_to_event

10

pa(@)i=1-exp (= [ hit| ) dt) e
0 1 | 2011

i 20'19

Hazard ratios Z ggi?
ho(t) exp (,31331 e R ﬁj (Cl?j -+ 1) == n%3 = ,Bkﬂ?k) 2 20:17
= exp(B;) |0

ho(t) exp (ﬂlﬂh g skl ﬂkil?k;) -
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Model 3: Neural networks

import tensorflow as tf
from tensorflow.keras import Seguential

from tensorflow.keras.layers import Imput,

model = Sequential ([

Input (shape=(10,)),
Dense (2586) ,
Activation(tf.keras.
Dense (128) ,
Activation(tf.keras.
Dense (64) ,
Activation(tf.keras.
activation = "sigmoid")

Dense (1,

D]

model .compile(optimizer = opt,
y_traim,

model .fit(X_train,

batch_size = 64,

Dense ,

activations.relu),

activations.relu),

activations.relu),

pred = model.predict(X_test).flatten()

Activation

ps(z) =

2 (2)

o) (z) =

(g4,---,90) =

()
0,7

ne (

Tl {z>0

1/(1 + exp(—z))

k-1

+ 3 ) for 1< <qx |
=1 ‘

, otherwise,
(1,64,128,256,10) .

) K ==:417

2@ 023 022 6 2(D(x) | where

loss = ’binary_crossentropy’)
epochs = 100,

shuffle = True,

validation_split = 0.20)

Layer input size | output size | #parameters | input from layer x
Fully-conn. 10 256 2'816 0
ReLU ¢ 256 256 0 1
Fully-conn. 256 128 32'896 1
ReLU ¢ 128 128 0 2
Fully-conn. 128 64 8’256 2
ReLU ¢ 64 64 0 3
Fully-conn. 64 1 65 3
Sigmoid output 1 1 0 4

o

o

o
|

E

o000

L

9000000000000

id | year ‘ age | gender | bmi | sbp| event|| time_to_event
1 | 2010 || 35 m 24 | 120 0 -
1 | 2011 |} 36 m 24 | 120 0 -
1 | 2019 || 44 m 24 | 120 0 -
2010 [} 35 m 33 | 145 0 7.5
2 | 2011 || 36 m 33 | 145 0 6.5
2 | 2017 || 44 m 33 | 145 1 0.5
3 | 2010 |} 35 m 26 | 125 0 -
3 | 2011 || 36 m 26 | 125 0 -




Model performance

Table 3: Performance metrics on the test data subset of D;.

Performance metric | logistic regression pi(x) | Cox regression p2(x) | neural net us(x)
ROC AUC 56.17% 56.17% 56.04%
MSE wrt log(u*(x)) 0.0016 0.0016 0.0057
Logistic deviance 9223.88 9223.88 9227.72

Table 4: Performance metrics on the test data subset of D,.

Performance metric | logistic regression p;(x) | Cox regression ps(x) | neural net us(x)
ROC AUC 90.54% 90.55% 92.05%
MSE wrt log(p*(x)) 1.74 1.75 0.11
Logistic deviance 85383 83994 75732

_/
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Model performance

Calibration plot logistic regression

Calibration plot Cox regression

Calibration plot neural network
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Simulated log 10-year mortality rates
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Asymmetric cryptography (public/private key)

» Create a shared secret s for symmetric encryption (stream ciphers: Salsa20, RC4, ..., block ciphers: AES, DES, RCb, ...):

Alice: “Secret message” -> m € (Z/2Z)" -> m+ f(s) => Bob:m+ f(s)+ f(s) -> “Secret message”

or f(m,s) or f(f(m,s),s)

 Some examples:

1.
2.

RSA (Rivest, Shamir, Adleman, 1977): Factoring large integers n = pq (n public, p, g private)

ElGamal (1985): Discrete logarithm, (multiplicative) group G, usually G c (Z/pZ)" =:IF, of order g = (p-1)/2 with generator g,
solve x = log, h (g, G, h public, x private)

Elliptic curves methods (1985): Discrete logarithm, where group G is based on elliptic curves

Lattice based methods, e.g., LWE (“learning with errors”, 2005): Solve Ax + ¢ = bmod q for x € (Z/qZ)", where A is drawn uniformly
from (Z/qZ)™™, € € [—q/4,q/4]™ is drawn from a “non-trivial” distribution y, and b € (Z/qZ)™ (b, q, A public, x private)

Many more examples from NIST standardization proposals for post-quantum cryptography (factorization and discrete logarithm can
be calculated very efficiently on quantum computers), e.g., CRYSTALS, 2018, while SIKE had to be removed from the list in August
2022.

@ Swiss Re 31 August 2023 17


https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://arstechnica.com/information-technology/2022/08/sike-once-a-post-quantum-encryption-contender-is-koed-in-nist-smackdown/

RSA

« RSA, 1977 based on Euler theorem: m?™ = 1 modn for gcd(m,n) = 1, where @(n) = #(Z/nZ)* (Euler’s totient function)

-n=p=7 ¢(p)=p-—1

“n=pg=15 90 =-ve-0 [ o [N 3 [H 5 | o [T o |10 [ +> [SAa]

— Choose “random” p, q,d with ged(d, (pq)) = 1, calculate e with ed = 1 mod ¢(pq) with extended Euclidean algorithm,
e,n public key, p, g, d private key

— Encryption: message m < n,m® modn

— Decryption: m®? = mmodn

kp(n)+1

— Proof- m%* =m = mmodn

— Calculating d from e and n < calculating ¢(n) < factoring n = pq

— Proof idea: “<" 1. p(pq) = (p — 1)(q — 1), 2. extended Euclidean algorithm ed + bp(pq) = ged(d, p(pq)) = 1
"="1.¢(pqg) = —(p+q)+ 1modn, 2. ed — 1 = kep(n) sufficient to factor n (see, e.g., Miller, 1975, ERH)

— There are attacks for, e.g., g < p < 2q,3d < nt/4 (Wiener, 1990) and several others (Zhang, 1999)

— Homomorphic encryption RSA example: (m;m,)¢ = m;°m,°® modn, in general: enc(op,(my; m;)) = op,(enc(m,), enc(m,))

@ Swiss Re 31 August 2023 18


http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://dl.acm.org/doi/pdf/10.1145/800116.803773
https://ieeexplore.ieee.org/document/54902
https://www.fq.math.ca/Scanned/39-3/zhang.pdf

Confidential
collaborative analytics
and machine learning
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Why lattices?

RSA uses large finite (abelian) groups

G = (Z/nZ)* (2048 bits, 4096 bits,...)

To speed things up:

« Elliptic curve crypto uses smaller groups, whose operations are
more expensive.

« Lattice cryptography uses larger groups, but whose operations
are much cheaper.



Lattice Cryptography

Lattice-based cryptography is the use of conjectured hard problems on point lattices in

R™ as the foundation for secure cryptographic systemes.

Features:

 Apparent resistance to quantum attacks (in contrast with most number-theoretic
cryptography) [Sho97]

« High asymptotic efficiency and parallelism

« Security under worst-case intractability assumptions [Ajt96]

« Versatile and powerful cryptographic objects (FHE [Gen09], ABE [BGG+14], Code
obfuscation [GGH+13]..)



Main Milestones in Lattice Cryptography

1982: First use of lattices in cryptanalysis (LLL): knapsack cryptosystems
1996: First crypto schemes based on hard lattice problems: NTRU, Ajtai-Dwork, GGH,...
2009: Fully-Homomorphic Encryption on Lattices

2012: Leveled cryptosystems



What is a Lattice?

A lattice is the set of all integer linear combinations of
(linearly independent) basis vectors
B ={by,b,,.., b} c R"

n
Lzzbi-Zz{Bx:xEZ"}

i=1

The same lattice has many different bases:
n
L= Z Ci- Z
i=1

Lattice: discrete additive subgroup of R™




Simple Example (Preliminary Homomorphic
Encryption)

Good bases and bad bases: GGH (Goldreich,
Goldwasser, Halevi) family
Two lattice bases

« “Good" basis (B, private key) Gap
« “Bad” basis (H, public key, Hermite Normal (Homomorphic
Form) Capacity)

Encryption of m: ¢ = E(m) = v + n[m] (lattice
point + noise) Cryptotext
Decryption: D(c):¥ = B[B™ '] Centroid
Homomorphism:

¢, +¢; = (v +nfmy]) + (v, + nlmy))

= v3; + n[my; + m,]

Homomorphic
Addition

Bad Basis



Base Lattice Problems (ex: SVP, CVP)

Shortest Vector Problem SVP, Closest Vector Problem CVP,
Given a lattice L(B), find a (nonzero) lattice Given a lattice L(B) and a target point ¢,
vector Bx, x € Z¥ of length (at most) ||Bx|| < find a lattice vector Bx within distance

YA, IBx — t|| < yu




Hard Problems in Lattice Cryptography
(Ring Learning with Errors)

Ring-LWE distribution: For an s € R, (the secret), the ring-LWE distribution 4, , over
R, X R, is sampled by choosing a € R, uniformly at random, e « x, and outputting
(a,b =s-a+emodq)

Decision-R-LWE: Given m independent samples (a;, b;) € R; X R, where every sample is
distributed according to either:

« A, , forauniformly random s € R, (fixed for all samples),

 The uniform distribution

Distinguish which is the case (with non-negligible advantage)

Normal form: secret from s « y

More efficient than LWE (smaller m and FFT-like polynomial products)
Reduction of RLWE , , to quantum SVP, [LPRIQ]



How to build Homomorphic Cryptosystems from Tline insicur
RLWE

Noise management is essential in homomorphic cryptosystems
® ®

Non-fresh Encryption:
after homomorphic op.

Noise norm grows

after homomorphic Fresh Encryption
operations

Decryption Radius:
Homomorphic “capacity”

Coded message +
random noise

‘ . . tuneinsight.com



How to build Homomorphic Cryptosystems from
R-LWE (Somewhat vs Fully HE)

¢ = Evaln(pk. f.(c1,....¢cn)) = Encu(pk. f(ma,...,my))
Only valid when fis of depth < L

~
-

If Dec (squashed) has depth < L

Bstrs:(pk, [m] 1) = Evals(pk, Decs, [m]pi)



RLWE cryptosystems

Common characteristics of modern RLWE cryptosystems:

« Cyclotomic polynomial f(x) = x™ + 1, n power of two

 Ciphertext modulus Q =[]g;

+ Ring Rq = Zy/ (f(x))

 Error distribution y with power |||l < B

 Plaintext modulus « Q, scale factor A

 Key generation:

« Secretkey:.s «y

« Public keyisan RLWE sample: E.g., (ag = —(a;s + e),a;,), with a; « Ry, e « x

- Encryptions are vectors of polynomials in Ry, with the encoded message

« The decryption function is of the form 0
v

E c; L message noise
=0
noise message

noise message



Efficiently using lattice cryptosystems: packing in
the coefficient domain

All the encryptions over RLWE work with polynomials of degree d
Each coefficient is a plaintext slot in Zy: a = a = ¥ a;x
SIMD homomorphic operations:

Polynomial addition
d-1

E(a) + E(b) =E Zax + E sz —E(Z(al+b)x‘)

Polynomial multiplication (modular polynomial f(x) = x% + 1)

d-1 d-1/ i d-2 [/ d-
E(a) -E(b) =E z - be =E z Z(aj-bi_j) xi—y 7 (aj bgti_ ])
i= i=0 \j=0 =0 \j=i+1

Nega-cyclic homomorphic convo_lution: E(c'")=E(a’)-E(")

After decryption: ¢ = Y&} c{(—l)_éx" = C = Z?§01(23-=o(a] i— ]))x + 2= 02(21 Siva(a
ba+i-j))xt



Efficiently using lattice cryptosystems: packing in
the slot domain

Use an automorphism as message coding that switches domain
Equivalent to an NTT (Number Theoretic Transform) or DFT (Discrete Fourier Transform)

Ex. DFT (for inputs x, X € C%)

1 __j2mkn
DFT[x] =Xk=2xn~e d
n=0
d-1
1 j2mkn
DFT Y X] =x, = Z) Xie d
k=0

Important properties:
« Circular convolution: DFT UX Y], =St g xiyn—i + 2L n+1xlyd+n i =X, ® 9y,

+ Duality: DFT[x - ¥ = = (2o Xi¥n- l+zl 1 Xi¥aun—i) = =X @ Yy
. Parcevalstheorem.2n=0xnyn— Zﬁ X Y

Homomorphic operations become component-wise when the message is in the
slot domain

oe -10- VPLIO omponent- e VPUOYr O -[0-
- .



Function evaluation: polynomial approximations

Ring operations are additions and products

Non-polynomial functions have to be:
« approximated by a polynomial
« run on universal gates nand / xor with binary arithmetic

Let f(x):[a,b] € R = R, with c € [a, b]
« Taylor approximation: Error bounded, but not uniform in [a, b]
Preferred when input distribution is denser around ¢ (e.g., Gaussian)

« Least-squares approximation: minimizes average square error in [a, b]
Preferred when input is uniformly distributed and high homomorphic capacity

« Chebyshev approximation: Bounded maximum error, converges with $d$ to the
mMinimax polynomial that minimizes this maximum approximation error [a, b].
Preferred to avoid overflows and for numerical stability



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

Evaluation of a Logistic regression prediction
k
yi=u| Bo+ z a;iP;
j=1

For a dataset with [ records and k features



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

1. Parameterization and cryptosystem instantiation

from tuneinsight.cryptolib.hefloat import hefloat

# Parameterization: scale/precision and circuit depth

log scale = 45 # Fixed-point arithmetic floating point scaling factor in bits (log2(Delta))

levels = 7 # Circuit depth

log_gi = [log_scale+5] + levels*[log_scale] # 5 additional bits for the lowest lewel, to account for plaintext growth

log pi = [log _scale+5] # Auxiliary module used for relinearization (usually, at least of the same size as the lowest level g&)

# In order to generate an instance of the cryptosystem, the RLWE ring degree is automatically chosen to ensure at least 128-bit of security
# A context stores the scheme cryptographic parameters and a key generator
context = hefloat.new context(log qi = log gi, log default scale= log scale, log pi = log pi)

#Print some information about the cryptographic parameters

print(f‘'Log2 N: {context.parameters.log n(}}")

print(f'Log2 Moduli Chain: Q{log_gi} + P{log_pi}")

print{f'Log2 QP: {context.parameters.log_q() + context.parameters.log p()}")
print(f'Log2 Slots: {context.parameters.log slots{)}')

print(f Available Depth: {levels}')

Log2 N: 14

Log2 Moduli Chain: Q[5@, 45, 45, 45, 45, 45, 45, 45] + P[58]
Log2 QP: 414.9999999983431

Log? Slots: 13

fvailable Depth: 7



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

2. Key generation

# Generate a fresh secret key
sk = context.new secret key()

# Instantiate an evaluator with a relinearization key

# The relinearization key is at public-evaluation key required to ensure ciphertext x ciphertext compactness
# The resulting evaluator object contains only public information and can be freely shared

evaluator = context.new_evaluator{context.new_relinsarization_key(sk))

3. Polynomial approximation of the activation function

import numpy.polynomial.chebyshev as chebyshev
import numpy as np

# Expected interval of the encrypted values after the scalar product
a = -12
b = 12

# Interpolates the Sigmoid in the interval [-12, 12] and returns the coefficients
# for the Chebyshev approximation polynomial in the Chebyshev basis
coeffs = chebyshev.chebinterpolate(lambda x: 1/(1+np.exp(-((b-a)/2 * x + (b+a)/2))), 63)



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

4. Synthetic data generation

## Synthetic data generation:

# Number of samples to process in parallel (available plaintext slots that one encryption can hold)
batch_size = context.slots()

# Number of features (k=288)
features = 288

# Generate random data in [-8.5, @.5]. This is the matrix A’
data = np.random.rand(batch_size, features)-8.5

# Generate random regression weights in [@, 1]. These represent beta i, i=1,...,k
weights = np.random.rand({features, 1)

# Generate random bias (intercept coefficient) in [@, 1]. This represents beta 8
bias = np.random.rand(1)



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

5. Packed encryption of all inputs

Option 1: horizontal packing

intercept k columns
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Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

5. Packed encryption of all inputs

Option 2: vertical packing
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mtercept
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Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

5. Packed (batched) encryption of all inputs

# This optional parameter defines whether the input vectors will be encoded in the coefficients domain (if batched=False)

# or in the slots domain (if batched=True). The latter is the default behavior, and it enables component-wise homomorphic operations
# (additions and products)

batched = True

# The encrypt function can receive a two-dimensional matrix as input, in which case it encrypts each row of the input matrix in one ciphertext.
# Therefore, we transpose the input A', in order to encrypt each column of A" in one ciphertext.

# We need to explicitly make a copy to ensure a correct memory

# alignment when passing C pointers of arrays to the Go wrapper.

# The function returns an object that stores a vector of ciphertexts.

encrypted_data = context.encrypt(data.transpose().copy(), sk, batched)

# As for the regression coefficients, we encrypt each of the weights replicated in all slots of the corresponding ciphertext.

# For this, we apply repetition coding (with tile) and pass the resulting matrix as input to the encrypt function, so that each row is encrypted in a separate ciphertext.
# The result is an object that stores a wvector of ciphertexts, each containing one regression coefficient replicated in all its slots.

encrypted_weights = context.encrypt(np.tile(weights, (1, batch_size))* 2/(b-a), sk, batched)

# The intercept coefficient or bias is also encrypted in its own ciphertext, with the same repetition coding as all the other regression coefficients
encrypted_bias = context.encrypt({np.tile(bias, (1, batch_size))* 2/(b-a) + (-a-b)/(b-a), sk, batched)



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

6. Homomorphic evaluation of the model prediction under encryption

# Encrypted evaluation of data @ weights computed as np.sum{data.transpose() * np.tile(bias, (1, batch_size)), axis=8)
# This is faster, but equivalent, to doing evaluator.sum{evaluator.mul{encrypted data, encrypted weights), axis=8)
encrypted scalar product = evaluator.scalar product({encrypted data, encrypted weights)

# Encrypted evaluation of data @ weights + bias

encrypted_scalar_product_plus_bias = evaluator.add{encrypted_bias, encrypted_scalar_product)

# Encrypted evaluation of sigmoid(data @ weights + bias)
encrypted prediction = evaluator.polynomial{encrypted scalar product plus bias, coeffs=coeffs, basis="Chebyshev")



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

7. Decryption of results

# Decrypts the values
prediction = context.decrypt(encrypted prediction, sk)[:, :batch_size]

8. Accuracy comparison with the clear-text process

from math import log
# Finally, we evaluate the plaintext circuit
clear_target = 1/(np.exp(-(data @ weights + bias))+1)

# And compare with the decrypted result
print(f'Obtained: {prediction}’)
print(f'Clear tg: {clear target.transpose()}')

Obtained: [[0.87919843 ©.17177785 ©.22382661 ... 0.99488169 0.06266606 0.45500863]]
Clear_tg: [[©.87919843 ©.17177785 ©.22382656 ... 0.99488167 0.06266607 0.45500862]] Precision as -log2(avg l2(obtained-clear_tg))):

31.818855691640856

print(f'Precision as -log2({avg_l2{cbtained-clear_tg)))}: {-log(np.sgri(np.sum{{prediction-clear_target.transpose())}**2)}/batch_size, 2}}")



Recap on Homomorphic Encryption

a, b > ach
compute (o)
encrypt l encrypt
2. Keep the key.
3. Let your jeweler work on it through a glove box.
E(a),E(b) > E(a)*E(b) =E(a°b) | 4 Unlock the box when the jeweler is done!
Compute (%)
Figure from Prof. Kristin Lauter (“Private Al: Machine Learning on Encrypted Data”, 2021)

Homomorphic encryption enables computations directly on encrypted data:
“compute on the data without seeing the data”

..but what happens if the raw data cannot be moved or centralized?



Data collaborations: Centralized approach

@ Dde

o Single point of failure at
the central database

e Individual sites lose
control over their data

e« Not always feasible
across jurisdictions
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Data collaborations: Federated Learning
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Requires trust on the aggregation
server

Vulnerable to re-identification and
reconstructlon attacks

B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models under the
GAN: Information leakage from collaborative deep learning. In
ACM CCS, 2017.

Z.Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi. Beyond
inferring class representatives: User-level privacy leakage from
federated learning. In IEEE INFOCOM, 2019.

L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In NIPS.
2019.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In IEEE
S&P, 2019.

M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy
analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In
IEEE S&P, 2019.



Secure Multiparty Computation (SMC)

Problem statement:

A set of players P = {P;, P,, ..., Py} would like to compute a function
f(x1,%2, ..., xx) = (1, V2, ..., Yn) of their joint inputs.

Requirements:

1. Privacy
No party should learn anything more than its prescribed

output

2. Correctness
Each party is guaranteed that the output that it receives

Is correct

Realization:

An (interactive) multiparty cryptographic protocol

X5 Y5

Xq Ya

X3 Y3



MHE (Multiparty Homomorphic Encryption)

Combination of:
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collective key Distribution
FL Data

lterative local &

: . Minimization
collective training

v Policy enforcement embedded in

the protocol
Raw data does not move

RN

end

Computation is encrypted end-to-
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Data collaborations: Secure and distributed approach

Organization
security perimeter
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Practical example: training mortality models on D,
dataset with federated data using Tune Insight’s
platform and Python SDK

Comparison of three scenarios

Federated Learning Encrypted Federated Learning

! 1
' Local Training | Federated
! 1 Confidential

i Aggregation

i Local Training |

E Aggregation

________________________________

Hybrid Federated Learning

_______________ O
Local Training | Federated
Confidential
§ Aggregation
E ﬁ

>

Differential
fmmmmmmmmmmmees ! Privacy Noise




Practical example: training mortality models on D,
dataset with federated data using Tune Insight'’s

platform and Python SDK

1. Model parameter definition (Cox and Logistic Regression)

task_id cox = 'mortality cox’
task _def cox = {
"n_inputs”: 11,
"n_classes™: 2,
"model”: {
"type": "cox",
"pretrained”: False,

3

"shuffle data”: True,
"balance train classes”: True,
"batch_size": 2848,
"drop_last_batch”: True,

"loss_criteria™: "cross _entropy loss”

task_id logreg = "mortality logreg’
task _def logreg = |
"n_inputs”: 11,
“n_classes™: 2,
"model”: {
“"type": "logreg",
"pretrained”: False,
"shuffle data”™: True,
"balance train_classes": True,
"batch_size": 2848,
"drop_last _batch": True,
"loss _criteria”™: "cross_entropy loss”



Practical example: training mortality models on D,
dataset with federated data using Tune Insight’s
platform and Python SDK

Secure Federated Learning workflow: Training parameters

learning_params_ federated secure = models.HybridFLLsarningParams(
fl rounds = 2,
local epochs = 1,
num_workers = 8,
batch _size = 2843,
learning rate = 6.81,
momentum = 8.9,
gradient clipping = 8.1,
epsilon = 1,
delta = 8.881,

Running the computation

hybrid f1 = project.new hybrid f1()
hybrid f1l.max timeout = 388 * 68 * fime.second
_ = hybrid fl.create from_params(task_id=task_id cox, learning_params=learning_ params_federated secure, task def=task def cox)



Practical example: training mortality models on D, TnE msiany
dataset with federated data using Tune Insight’s
platform and Python SDK

Training performance

Cox Regression Logistic Regression

0.8
07
\ .\k o7
0.6
0.6
—\ 05
P

Tain —— Train
—=— Validation —— validation

0.0

—— Train

10 —— Train
—— Validation —— Validation

10
08 0.8
0.6 o 0.6

e}
5
0.4 £ 0.4

0.2

\

Epochs 1

12 sec.

Epochs 2

12 sec.
Epochs 1
11 sec.
Epochs 2
11 sec.

Aggregation: 0 sec. (0.619)
regation: 0 sec. (0.735)
egation: 0 sec. (0.768)

|

Aggregation: 0 sec. (0.679)

Cox regression  Logistic regression

Federated 0.916500 0.904500

tuneinsight.com



Legal analysis - GDPR Compliance

“Technical solutions such as multiparty homomorphic encryption (MHE) that
combine these three technical measures while still allowing for the possibility to
query and analyse encrypted data without decrypting it have significant
potential to provide effective security measures that facilitate cross-borders

transfers of personal data in high-risk settings.”

Compagnucci et al,, Supplementary Measures and Appropriate Safeguards for International Transfers of Personal
Data after Schrems Il (February 23, 2022). https://ssrn.com/abstract=4042000

Contact us for a full analysis of the platform benefits and risk minimization,
addressing the relevant GDPR recitals.

Article 25
Data protection by design
and by default

Article 33
Breach notification to
supervisory authority

Article 32
Security of processing

Data Protection

Benefits

of Tune Insight's solution

Article 34 Article 35 Article 46
Breach communication to Data protection impact Transfers subject to
the data subject assessment appropriate safeguards


https://ssrn.com/abstract=4042000
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-32-gdpr/
https://gdpr-info.eu/art-33-gdpr/
https://gdpr-info.eu/art-34-gdpr/
https://gdpr-info.eu/art-35-gdpr/
https://gdpr-info.eu/art-46-gdpr/

Other applications of secure federated analytics

Hospitals &
Pharma

Collective survival
analysis in oncology

Lab reference data

Train image classifiers
in dermatology

V _\|_| Universitatsspital
J— 7l |Basel

e USZ s
. USz
® Q’ ”;n‘su L
o WINSELSPITAL
‘ Unﬁ/ lllllll ires o
Genéve rothers

Insurance & Re-

Insurance

Train collective risk
models

Cross-vertical
collaboration (Value-
Based Healthcare)

groupe

+ others

Cyber
Security

Cross-organization
alert enrichment

Collective threat
intelligence models

Private search of
loCs/alerts

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera

Confederaziun svizra

armasuisse
Science and Technology

+ others

Financial
Services

Collaborative
analytics

Sensitive data
pooling, AML-CFT

Participated in the Tech Sprint organized by ACPR
on Confidential Data Pooling for AML-CFT in 2022

Confidential Collaborative Analytics and Machine Learning




With Tune Insight, organizations can collaborate
on their most sensitive cybersecurity data to
collectively better defend against cyber attacks

Example Cybe rsecu rity Klert Matching Enrichment results
Secu ritf/aSl?\%ieci &
o S Connecting the dots between
events across customers happens in e .
the analyst’'s head y -
v v
N & “ With Tune Insight, MSSPs can y é
Customer A o automate collective alerts

enrichment across customers to (&
reduce false positives and save time

Collectiveresult  colediw [

Developed frontend and backend
integrations
Provider's ]
Customer B &



Cyber: Integration with existing platforms and dashboards
Use case: enriching alerts with data from multiple parties,
integrated in the organization’s existing tools and workflows
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Based on the same core technology, we address
similar problems in other verticals

Example Healthcare

+ Survival Analysis

Pharma A
:. Relying only on their own data, Survival Analysis results Besits
hospitals and clinics lack it ot S meomirach ;
representative datasets to provide
personalized care )
, Collective result
Hospital B ﬁ
“ With Tune Insight, they can .
o collaborate with others to
recommend precision treatments oen § X
without moving or disclosing any o]
raw patient data, and include private il
Clinic C a players in the collaboration ol z

All [l High Tobacco Consumption [ll  Low Tobacco Consumption ll  With BRAF
Developed frontend and backend

integrations

The computation of these resuits was made possible by Tune Insight's Federated Confidential Computing



Collaborations in Financial Services

Challenges in Fraud Detection and
AML?2

. Isolated view
. Data interoperability
. Data protection and privacy

WORLD “PETs can fundamentally
ECONOMICcChange the nature of
FORUM data sharing in financial
services, creating new
value for customers and addressing
institutions' most pressing problems
in a way that is acceptable to
customers, regulators, and society at
large.”
WEF. September 2019

1httDs://vvww.weforum.orQ/WhiteDa pers/the-
next-generation-of-data-sharing-in-financial-
services-using-privacy-enhancing-
technigues-to-unlock-new-value/

Isolated view

With collab ive analysis and | ing (CAL)

7
e />
o
\ n2 @
I 9%y YN Z
e
B

Traditional Siloed Rule-Based

. Traditional rule-based
systems can result in high
false-positives and false-
negatives (90%-95% of the
generated alerts are FP)?

. ML not fully effective when
data from multiple sources is

not available (siloed views)

2

Collaborative Analysis and
Learning

. Cross-border ML monitoring
can reduce FPs 75% vs rule-
based siloed.?

. PET-enabled CAL with
machine learning-based
network analysis appears to
reduce the number of FPs by

up to 80% compared with the

siloed rule-based method.

https://www.bis.org/about/bisih/topics/fmis/aurora.htm



https://www.bis.org/about/bisih/topics/fmis/aurora.htm
https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/
https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/
https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/
https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/

Based on the same core technology, we address
similar problems in other verticals

Example Financial Sector

Bank A a
2 Problem:
Customer data cannot be shared
Effective fraud detection requires
collaborations
Bank B e “ Solution:

e Blacklist matching and
training of fraud models
without moving or disclosing
customer data

Bank C a

U collective Blacklist Search

Check if an IBAN has been blacklisted by a bank in this network

BE05416941631736997173182998 venly

* The IBAN you search for is not disclosed to the other participating |
« |f there is a match, its source is hidden

* Your blacklist never leaves your security perimeter

¢ Your blacklist is never revealed to other participating banks

This IBAN was found
in the collective blacklist.



Collective statistics and time-series information
about suspicious account activity

Collective IBAN Usage Monitoring using Private Search

In this notebook, we showcase Tune Insight's Collective Private Search through a simple use case: A group of three independent financial
institutions hold databases of transactions and analysts want to query the usage of specific IBANs over a period of time across all financial
institutions.

In practice, responding to such query would require the institutions to share or centralize their transactional data and view the query from
the user, affecting confidentiality and privacy across stakeholders.

Using our Collective Private Search distributed computation, the analyst's query can effectively be treated while ensuring:

e The transactions databases are not shared across institutions.
e The analyst's query is not visible to any of the institutions.

These guarantees are made possible through the use of a Private Information Retrieval (PIR) protocol, a cryptographic primitive that allows a
user to retrieve information from a server without revealing which information they are retrieving. The PIR protocol is implemented securely
using homomorphic encryption.

0

# Valid Query

searched_iban = "AT631626621525632941972264859661"
result = private_search.query(searched_iban)
display(result)

2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023- 2023-

2023-

2023-

2

01-01 01-02 01-03 01-04 01-05 01-06 01-07 01-08 01-09 01-10 ™ 01-20 01-21 01-22 01-23 01-24 01-25

17 28 14 6 5 6 6 5 3 2 . 2 6 2

1 rows x 29 columns

4

The results can then be plotted using the library or used in further processing.

transactions

3

4

12

private_search.plot_result(result,f'{searched_iban} transaction count’, x_label="time', y_label='transactions',t:

AT631626621525632941972264859661 transaction count

' i i i ' 1
2023-01-01 2023-01-05 2023-01-09 2023-01-13 2023-01-17 2023-01-21 2023-01-25

time
U

4 The computation of these results was made possible by Tune Insight’s Federated Confidential Computing.

i
2023-01-29



Product Overview: Tune Insight Software Module

Input
h_d-

Databases
. MySQL /
MariaDB
o PostgreSQL
. SQlite
File stores
o File system
(CSV, IJSON)

o S3/ Minio

APls

o Generic APIs
Elasticsearch
Splunk

[12b2 (health)

o e} o

= Data source integrations

Software Module

ﬁ g Tune Insight

Secure multi-party operations

Encrypted Computations

Statistics
v Aggregations, moments,
dispersion
J Sorting, extrema, quantiles
v Statistical tests/variance analysis
Joins and Matching
J Private Set Intersection

v Fuzzy Matching
Machine Learning

J Regressions (GLM) and neural
networks
J Time-to-event / Survival Analysis

a a

a
B B ES

Other participants

Output

3 Interfaces, visualization

integrations

Web dashboard

° Workflow builder
o Graph dashboard
o Filters

o Data export

Python SDK
° Jupyter notebooks
° Programmable

API integrations

Vertical Specific tools

° Splunk
° Elasticsearch
° Glowing Bear



IT Security Assessment

H+

e International security frameworks SS'
o  OWASP Application Security Verification Standard
o  NIST Cybersecurity Framework

Information security and data protection

e Swiss and domain specific frameworks Reauiramants rogarding ho T socurtyofed Lo 5o cgcurieg
o ICT minimum standard
. . . éveloppements WEB
o Hospitals and H+ guidelines |

e State-of-the-art security technologies
o OpenlD Connect I
o  Attribute-based Access Control
o Key Management Service integration
e Static Application Security Testing
o Snyk, Trivy, GitHub Dependabot
e Dynamic Application Security Testing
o  Penetration testing by ImmuniWeb

Detected Vulnerabilities Statistics

Low Risk & Warnings

)OO

Critical Risk

PERCENTAGE

ImmuniWeb’ o v R

Al for Application Security

Overall Ris
verall Risk

Diagram 1: Number of vulnerabilities in your web grouped by risk levels




Use case for SPO: Federated analytics platform
for research and molecular tumor board

Q1. How many adult cancer
routine data for research
on or after 1st January 2015,

mutations in BRAF gene and
under anti-PD-1 are there?

patients consenting on reuse of

with diagnosis of a malignancy
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Privacy-Preserving Federated Analytics for
Precision Medicine
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Privacy-Preserving Single-Cell Analysis

System Model

A 1. Setup phase: Key peneration 2. Global Model Initialization 3. Local computation 4. Aggregation and Global Model Update
© O w s Wy
P TR e o R e R
W, W e
o= .
= 5 Wy gl - e
O O = . O
i A - oila |t @) | g g
I Training Iteration ]
Secret Model
Secret keys
Qo G G oo
Collective public "‘YO"'[ Decrypt Model for
Further Analysis
Querier’s public %
key
Querier’'s secret ’
key

-

Convolution Pooling Dense layer k‘
7’ .
c

m
Patients’ samples Filter responses Subsampled
vector

Output
layer

Output
(prediction)

Accuracy

Accuracy

Results

p=0.62

Z CellCnn

Local PriCell Local PriCell Local PriCell

Centralized (N=2) (N=2) (N=3) (N=3) (N=5) (N=5)

0.6

05

0.4

0.3

HD vs. CMV - Phenotype Classification

p=0.70

L2 CeliCnn
Centralized (N=2) (N=2) (N=3) (N=3) (N=5} (N=5)

Local PriCell Local PriCell Local PriCelf

HD vs. CMV - Multi-Cell Classification

S. Sav, J.P. Bosuat, J.R. Troncoso-Pastoriza, et al. “Privacy-preserving federated neural network learning for disease-associated cell
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Use case for Swiss BioRef: real-time personalized
lab reference ranges
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Secure Federated Training of Deep Neural
Networks on Dermatology Images with
combination of HE, MPC, FL, and DP

¥ = 4 epochs Local training Secure federated
3 * — B baseline training

: Nodes 1 node with 10909 3 nodes (~3635

— samples samples each)

//’(ﬁ—;-g Training accuracy 72.16% 77.65%

) Training Fl-score 0.279431 0.604438
= Validation accuracy 72.13% 78.88%
,_/ I Validation Fl-score 0.279364 0.564171

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Privacy params N/A € =1.0, 6 = 0.0001
Dataset: Fitzpatrickl7k, ~30k images Time overhead 0 ~10% (w.r.t. vanilla FL)

(https://github.com/mattgroh/fitzpatrick17k)
Model.

Type: VIiT with 4-layers embedding

Size: 5,528,259 parameters, 44.3MB

100 seconds/epoch on a g4dn.2xlarge AWS EC2 instance with a
Nvidia T4 GPU (16GB memory)
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Limited data availability for sensitive personal (Life &
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For sufficiently large and dense datasets, ML/DL
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